PERCEIVING SYSTEMS

AGORA: Avatars in Geography Optimized for Regression Analysis

Priyanka Patel¹, Chun-Hao P. Huang¹, Joachim Tesch¹, David T. Hoffmann^{2,3}, Shashank Tripathi¹, Michael J. Black¹ Max Planck Institute for Intelligent Systems, Tübingen, Germany, University of Freiburg, Bosch Center for Artificial Intelligence

Coal

Provide challenging image dataset to evaluate and improve the SOTA in 3D human pose and shape estimation

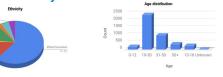
Existing datasets limitation:

Method	Complex	Multi-	Occlusion	Full body
	Clothing	Person		GT
Human3.6M[1]	×	×	×	×
HUMBI [2]	1	×	×	1
3DPW [3]	1	1	1	×
EFT [4]	1	1	1	×
SMPLy [5]	1	1	1	×
AGORA	1	1	1	1

AGORA preparation

- → fitted 4240 SMPL-X [7] to commercial scans with high accuracy of 5mm shape error
- → render 5-15 scans per image using Unreal Engine
- → used image based lighting and 3D environment
- → span 350 unique subjects; include 257 kid scans

Baseline Finetuning


Models	3DF	W (14)	3DF	W (24)	AGORA (24)		
	MPJPE	PA-MPJPE	MPJPE	PA-MPJPE	MPJPE		
SPIN-pt	96.9	59.3	95.5	65.5	175.1		
SPIN-ft (ours)	85.7	55.3	83.7	61.8	153.4		

References

1. Human3.6M; Ionescu et al., TPAMI 2014	. 4. EFT; Joo et al., arXiv 2020.	7.
2. HUMBI; Yu et al., CVPR 2020.	5. SMPLy; Leroy et al., 3DV 2020.	8.
3. 3DPW; von Marcard et al., ECCV 2018.	6. HMR; Kanazawa et al., CVPR 2018	8.9.

- → 14529 training and 1225 validation images with corresponding masks and SMPL-X [7]/SMPL [8] fits
- → 3387 test images with web-based evaluation server
- → 173K individual person crops in total

Age and Ethnicity

- → finetuning SPIN [9] with AGORA training images improves MPJPE by 12% for 3DPW [3] and ~13% for AGORA
- → improved accuracy on 3DPW (natural image dataset) confirms the realism of AGORA

SMPLify-X; Pavlakos et al., CVPR 2019.
 IO. CenterHMR; Sun et al., arXiv 2020.
 SMPL; Loper et al., SIGGRAPH Asia 2015. 11. ExPose; Choutas et al., ECCV 2020.
 SPIN; Kolotouros et al., ICCV 2019.
 TankMocap; Rong et al., arXiv 2020.

Baseline Evaluation

Method		MPJPE↓			$MVE \downarrow$			NMJE ↓		NMVE ↓		F1 score↑		
	Wethod	В	LH/RH	F	FB	B	LH/RH	F	FB	В	FB	B	FB	FI SCOLE
	HMR [6]	180.5	N/A	N/A	N/A	173.6	N/A	N/A	N/A	226.0	N/A	217.0	N/A	0.80
CenterHI EFT [4]	CenterHMR ^[10]	168.1	N/A	N/A	N/A	161.4	N/A	N/A	N/A	242.3	N/A	233.9	N/A	0.69
	EFT [4]	165.4	N/A	N/A	N/A	159.0	N/A	N/A	N/A	203.6	N/A	196.3	N/A	0.81
•1	SPIN ^[9]	175.1	N/A	N/A	N/A	168.7	N/A	N/A	N/A	223.1	N/A	216.3	N/A	0.78
	SPIN-ft (ours)	153.4	N/A	N/A	N/A	148.9	N/A	N/A	N/A	199.2	N/A	193.4	N/A	0.77
X-	SMPLify-X [7]	182.1	46.5/49.6	52.9	231.8	187.0	48.3/51.4	48.9	236.5	256.5	326.5	263.3	333.1	0.71
E	ExPose [11]	150.4	72.5/68.8	55.2	215.9	151.5	74.9/71.3	51.1	217.3	183.4	263.3	184.8	265.0	0.82
SMPL	Frankmocap [12]	165.2	52.3/53.1	N/A	N/A	168.3	54.7/55.7	N/A	N/A	204.0	N/A	207.8	N/A	0.81

Evaluation Metric and Protocol:

- → TP, FP and FN are detected by matching the projected GT and prediction keypoints
- → MPJPE/MVE: pelvis-aligned joint and vertex error
- → NMJE/NMVE to facilitate multiperson 3DHPS analysis

NMJE or NMVE = (MPJPE or MVE)/F1

- → Low NMJE/NMVE -> low false positive and misses
- → SMPL-X evaluated on body(B), faces(F) and hand(LH/RH) individually and together (FB)
 FB = B+(LH+RH+F) /3

Occlusion:

- → high occlusion leads to high
- MPJPE error and high misses → methods that miss lots of people
- suffer under recall NMJE

Distance from center:

- → weak perspective cameras assumption by baselines
- → error increase for off-center people in the image for large fov images

Orientation:

→ error increase for people facing opposite to the camera